AN S LA D DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training

UNIVERSITY OPTML Aochuan Chen™, Yimeng Zhang™!,

Jinghan Jial, James Diffenderfer?, Jiancheng Liu!, Konstantinos Parasyris?, Yihua Zhang!, Zheng Zhang?,

Bhavya Kailkhura?, Sijia Liu! I c L R

'Michigan State University, 2Lawrence Livermore National Laboratory, *UC Santa Barbara Scan For Code

1y

ool
et
2%
el

¥

i;‘,
i
[e]
]
=
E4
[

i
i
>
3;:
i

:

2
5§§;§33g
5
wr'y

"
L
*
PLe
S
5

LLg Lawrence Livermore
National Laboratory

— % DeepZero: Sparse Gradients Guided by ZO Pruning s Experiments and Applications
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