

DeepZero: Scaling up Zeroth-Order Optimization for Deep Model Training

Aochuan Chen^{*1}, Yimeng Zhang^{*1},

Jinghan Jia¹, James Diffenderfer², Jiancheng Liu¹, Konstantinos Parasyris², Yihua Zhang¹, Zheng Zhang³,

Bhavya Kailkhura², Sijia Liu¹

¹Michigan State University, ²Lawrence Livermore National Laboratory, ³UC Santa Barbara

Zeroth-Order Optimization: How to optimize without first-order gradient?

• by finite-difference:
$$\hat{\nabla}_{\boldsymbol{\theta}}\ell(\boldsymbol{\theta}) = \frac{1}{q}\sum_{i=1}^{q} \left[\frac{\ell(\boldsymbol{\theta}+\mu\mathbf{u}_{i})-\ell(\boldsymbol{\theta})}{\mu}\mathbf{u}_{i}\right]$$

- to tackle with black-box involved optimization, such as nondifferentiable physical simulators[1].
- to unleash the potential of special hardware, such as ONNs[2] (optical neural networks).

✤ Gradient Estimator: CGE over RGE

> CGE uses basis vectors while RGE uses random vectors.

$$(\mathbf{RGE}) \ \hat{\nabla}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \frac{1}{q} \sum_{i=1}^{q} \left[\frac{\ell(\boldsymbol{\theta} + \mu \mathbf{u}_i) - \ell(\boldsymbol{\theta})}{\mu} \mathbf{u}_i \right]; \ (\mathbf{CGE}) \ \hat{\nabla}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \sum_{i=1}^{d} \left[\frac{\ell(\boldsymbol{\theta} + \mu \mathbf{e}_i) - \ell(\boldsymbol{\theta})}{\mu} \mathbf{e}_i \right]$$

- Experiments show that CGE outperforms RGE in terms of accuracy given the same query budget
- Runtime profiling exhibits CGE's efficiency merit over RGE at the same number of queries

Figure 1. Performance comparison on a simple CNN with varying numbers of parameters on CIFAR-10. Table 1. Comparison between CGE and RGE from the perspective of accuracy, computation, and query efficiency.

Reference [1] Kiwon Um et al., Solver-in-the-loop: Learning from differentiable physics to interact with iterative pde-solvers. [2] Jiaqi Gu, et al., L2ight: Enabling on-chip learning for optical neural networks via efficient in-situ subspace optimization. [3] Chaoqi Wang et al, Picking winning tickets before training by preserving gradient flow.

- DeepZero: Sparse Gradients Guided by ZO Pruning
 - The disentanglement of weights within CGE is inherently pruning-friendly.
 - We extend a pruning-at-initialization method, GraSP [3], to its ZO version:

$$\hat{\mathbf{S}} := - oldsymbol{ heta} \odot rac{\hat{
abla}_{oldsymbol{ heta}} \ell(oldsymbol{ heta} + \mu \hat{\mathbf{g}}) - \hat{
abla}_{oldsymbol{ heta}} \ell(oldsymbol{ heta})}{\mu}$$

Guided by ZO-GraSP, we then introduce dynamic sparse pattern, leading to sparse ZO gradient estimates

Algorithm 1 ZO-GraSP-Guided ZO Training

- 1: Get $S_{\text{ZO-GraSP}}$ through ZO-GraSP (3)
- 2: Obtain layer-wise pruning ratio S_{layer} based on $S_{ZO-GraSP}$
- 3: for Epoch t = 0, 1, 2, ..., T 1 do
- Randomly generate a sparse coordinate set S_t according to S_{layer}
- for Iterations per epoch do
- Obtain (Sparse-CGE) $\hat{\nabla}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta})$ based on \mathcal{S}_t
- Update model weights: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} \alpha \hat{\nabla}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta})$

end for

5:

9: end for

Acceleration: Feature Reuse & Forward Parallel

Feature Reuse:
$$f_{\theta}(\mathbf{x}) = f_{\theta_{>l}}(\mathbf{z}_{l}) = \underbrace{f_{\theta_{>l}} \circ f_{\theta_{l-1}} \circ \cdots \circ f_{\theta_{l+1}}}_{f_{\theta>l}(\cdot)} \circ \underbrace{f_{\theta_{l}} \circ \cdots \circ f_{\theta_{1}}(\mathbf{x})}_{\mathbf{z}_{l} = f_{\theta_{1:l}}(\mathbf{x})},$$
Forward Parallel: $\hat{\nabla}_{\theta}\ell(\theta) = \sum_{i=1}^{M} \hat{\mathbf{g}}_{i}, \ \hat{\mathbf{g}}_{i} := \sum_{j \in \mathcal{S}_{i}} \left[\frac{\ell(\theta + \mu \mathbf{e}_{j}) - \ell(\theta)}{\mu} \mathbf{e}_{j} \right]$
Forward Parallel: $\hat{\nabla}_{\theta}\ell(\theta) = \underbrace{\sum_{i=1}^{M} \hat{\mathbf{g}}_{i}}_{Process 1} \bigoplus_{Process 2} \underbrace{f_{\theta}}_{Process 3} \bigoplus_{Process 3} \underbrace{f_{\theta}}_{Process 4} \bigoplus_{Process N} \underbrace{f_{\theta}}_{Process N} \bigoplus_{Frozen Features} \underbrace{f_{\theta}}_{Gradient} \underbrace{f_{\theta}}_{Collection}$

Figure 2. Forward Parallel: Queries are totally independent of each other and thus can be easily parallelized without any performance loss. **Feature Reuse**: one can reuse the feature immediately preceding the perturbed layer thanks to the minimum coordinate-wise perturbation by CGE.

Figure 3. DeepZero outperforms the computationalgraph-free baseline Pattern Search and computationalgraph-dependent non-BP methods (ResNet-20, CIFAR10).

Figure 5. Computation cost of CGE-based ZO training w/ Feature Reuse vs. w/o Feature Reuse. Empirically, Feature Reuse can half the running time.

Experiments and Applications

Figure 4. Comparison between DeepZero and FO training baselines on a ResNet-20 for CIFAR-10.

NON: Non-interactive training out of the simulation loop

Figure 6. In physical simulation-involved tasks, DeepZero enables 'solver-in-the-loop' training for non-differentiable simulators.

